Balanced Boulders and Seismic Hazard

By Steve Drury PUBLISHED ON October 12, 2020

China has been plagued by natural disasters since the earliest historical writings. Devastating earthquakes have been a particular menace, the first recorded having occurred in 780 BC .

During the Han dynasty in 132 CE, polymath Zhang Heng invented an ‘instrument for measuring the seasonal winds and the movements of the Earth’ (Houfeng Didong Yi, for short): the first seismometer.

A pendulum mechanism in a large bronze jar activated one of eight dragons corresponding to the eight cardinal and intermediate compass directions (N, NE, E etc.) so that a bronze ball dropped from its mouth to be caught by a corresponding bronze toad. The device took advantage of unstable equilibrium in which a small disturbance will produce a large change: akin to a pencil balanced on its unsharpened end.

The seismometer invented by early Chinese engineer Zhang Heng

Modern seismometers exploit the same basic principle of amplification of small motions. The natural world is also full of examples of unstable equilibrium, often the outcome of chemical and physical weathering. Examples are slope instability, materials that are on the brink of changing properties from those of a solid to a liquid state (thixotropic materials – see: Mud, mud, glorious mud August 2020) and rocks in which stress has built almost to the point of brittle failure: earthquakes themselves.

But there are natural curiosities that not only express unstable equilibrium but have maintained it long enough to become … curious! Perched boulders, such as glacial erratics and the relics of slow erosion and weathering, are good examples. Seismicity could easily topple them, so that their continued presence signifies that large enough tremors haven’t yet happened.

Now it has become possible to judge how long their delicate existence has persisted, giving a clue to the long-term seismicity and thus the likely hazard in their vicinity (Rood, A.H. and 10 others 2020. Earthquake Hazard Uncertainties Improved Using Precariously Balanced RocksAmerican Geological Union Advances, v. 1, ePDF e2020AV000182; DOI: 10.1029/2020AV000182).

A precarious boulder in coastal central California (credit: Anna Rood & Dylan Rood, Imperial College London)

Anna Rood and her partner Dylan of Imperial College London, with colleagues from New Zealand, the US and Australia, found seven delicately balanced large boulders of silica-rich sedimentary rock in seismically active, coastal California. They had clearly withstood earthquake ground motions for some time.

Using multiple photographs to produce accurate digital 3D renditions and modelling of resistance to shaking and rocking motions, the authors determined each precarious rock’s probable susceptibility to toppling as a result of earthquakes. How long each had withstood tectonic activity shows up from the mass-spectrometric determination of beryllium-10 isotopes produced by cosmic-ray bombardment of the outer layer. Comparing its surface abundance relative to that in the rock’s interior indicates the time since the boulders’ first exposure to cosmic rays. With allowance for former support from surrounding blocks, this gives a useful measure of the survival time of each boulder – its ‘fragility age’.

The boulder data provide a useful means of reducing the uncertainties inherent in conventional seismic hazard assessment, which are based on estimates of the frequency of seismic activity, the magnitude of historic ‘quakes, in most cases over the last few hundred years, and the underlying geology and tectonics.

In the study area (near a coastal nuclear power station) the data have narrowed uncertainty down to almost a half that in existing risk models. Moreover, they establish that the highest-magnitude earthquakes to be expected every 10 thousand years (the ‘worst case scenario’) were 27% less than otherwise estimated. This is especially useful for coastal California, where the most threatening faults lie off shore and are less amenable to geological investigation.

See also:  Strange precariously balanced rocks provide earthquake forecasting clues. (SciTech Daily; 1 October 2020) 

If you’d like to read more of Steve’s blog…….

Many thanks to Steve Drury for permission to republish his article and to Bernie Bell for sending it into The Orkney News

Leave a Reply