Global warming: Can mantle rocks reduce the greenhouse effect?

By Steve Drury First PUBLISHED ON July 6, 2021

Three weeks ago I commented on a novel and progressive use for coal seams as stores for large quantities of hydrogen gas. That would be analogous to batteries for solar- and wind power plants by using electricity generated outside times of peak demand to electrolyse water to hydrogen and oxygen.

There are other abundant rocks that naturally react with the atmosphere to permanently sequester carbon dioxide in alteration products, and form possible solutions to global warming. The most promising of these contain minerals that are inherently unstable under surface conditions; i.e. when they come into contact with rainwater that contains dissolved CO2.

The most common are anhydrous minerals containing calcium and magnesium that occur in igneous rocks. Basalts contain the minerals plagioclase feldspar (CaAl2Si2O8), olivine ([Fe,Mg]2SiO4)] and pyroxene ([Fe,Mg]CaSi2O6)] that weather to yield the minerals calcium and magnesium carbonate.

My piece Bury the beast in basalt, written in June 2016, mentions experiments in the basalts of Iceland and Washington State, USA to check their potential for drawing down atmospheric CO2. News of an even more promising prospect for CO2 sequestration in igneous rock emerged in the latest issue of Scientific American (Fox, D. 2021. Rare Mantle Rocks in Oman Could Sequester Massive Amounts of CO2Scientific American, July 2021 issue).

Distribution of ophiolites around the Eastern Mediterranean and Black Seas. Most orogenic belts carry comparable volumes of ophiolites. (Credit: Gültekin Topuz, Istanbul Technical University

The most abundant magnesium-rich material in our planet is the peridotite of the mantle, which consists of more than 60% olivine with lesser amounts of pyroxene and almost no feldspar. Being so rich in Mg and Fe, it is said to have an ultramafic composition and is extremely prone to weathering. The rock dunite is the ultimate ultramafic rock being made of more than 90% olivine. All ultramafic rocks are denser than 3,000 kg m-3, so might be expected to be rare in lower density continental crust (2,600 kg m-3). But they are present at the base of sections of oceanic lithosphere that plate tectonics has thrust up and onto the continents, known as ophiolite bodies. They often occur in orogenic belts at former destructive plate margins and are more common than one might expect. One of the largest and certainly the best-exposed occurs in the Semail Mountains of Oman, where scientists from the Lamont-Doherty Earth Observatory, New York State, USA, and other collaborators have been investigating its potential for absorbing CO2, since 2008.

Olivine-rich rocks react with naturally carbonated groundwater or hydrothermal fluids to form soft, often highly coloured material known as serpentine, well-known for the ease with which it can be carved and polished. As well as the mineral serpentinite [Mg3Si2O5(OH)4], the hydration reactions yield magnetite (Fe3O4), magnesium carbonate (magnesite) and silica (SiO2). If reaction takes place in the absence of oxygen gaseous hydrogen also forms. All these have been noted in the Oman ophiolite: fractures in serpentinites are filled with carbonates, and springs associated with them emit copious amounts of hydrogen and, in some cases, methane. Interestingly, the reactions – like those that involve anhydrous calcium-aluminium silicates when cement is wetted and then cures – release large amounts of heat. This makes the reactions self-sustaining once they begin in peridotite or dunite. However, at the Earth’s surface they are somewhat sluggish as the heat of reaction is lost to the air.  

Mantle rock in the Oman ophiolite, showing cores of fresh peridotite, brownish serpentinite and white carbonate veins (credit: Juerg Matter, Oman Drilling Project, Southampton University, UK)

The capacity for CO2 sequestration by ultramafic igneous rocks is high: a ton of olivine when completely hydrated takes in 0.62 tons of CO2. The Lamont-Doherty team has estimated that they speed up in crushed peridotite, for instance after milling during industrial-scale mining – peridotites are host rocks for platinum-group metals, nickel and chromium. (Kelemen, P.B. et al. 2020. Engineered carbon mineralization in ultramafic rocks for CO2 removal from air. Chemical Geology, v. 550, article 119628; DOI: 10.1016/j.chemgeo.2020.119628).

Spreading mine waste over large areas of desert surfaces  would be one way of capturing CO2. However, using the age of emplacement of the Oman ophiolite (96-70 Ma) and the amount of carbonate found in fractured serpentinite there, the team estimates that each ton of the 15 m deep zone of active weathering has naturally absorbed CO2 at a rate of about 1 g m-3 year-1 equivalent to 1000 tons per cubic km per year. But parts of the ophiolite have been fully altered to serpentinite plus carbonates since the Cretaceous, probably at depth. Dating some of the near-surface carbonate veins revealed that they had formed in only a few thousand years rather than the tens of million years expected. Natural sequestration could therefore be happening at depth about 10,000 times faster than theory predicts. Also natural springs emerging from the peridotite are highly alkaline and by combining with atmospheric carbon dioxide precipitate carbonate to form travertine deposits at the surface. This is so rapid that if the carbonate is scraped off the exposed rock, within a year it has recoated the surface.

This year, deep drilling into the Oman ophiolite has begun. To the surprise of members of the team, carbonate minerals are not present in the bedrock below 100 m depth: CO2 is not penetrating naturally beyond that depth. If it becomes possible to inject COdeep beneath the surface the exothermic reactions could be kick-started. This would involve sinking pairs of boreholes to set up a flow of carbon-charged water from the ‘injection’ hole to the other that would return decarbonised water to the surface for re-use.

The carbon-capture experiment in Iceland (Carbfix) has been running since 2012. Carbon dioxide separated from hot water passing through a geothermal power plant is re-injected into basalt at a depth of half a kilometre. This small pilot runs at a cost of US$25 per ton of sequestered gas. But it uses already concentrated CO2, whereas global-scale sequestration would require capturing, compressing and dissolving it directly from the atmosphere, probably costing about $120 to $220 per ton injected into mantle rock. The engineering required – about 5,000 boreholes – to capture a billion tons of CO2 deep in the Oman ophiolites is achievable with current technology. Since 2005 almost 140 thousand fracking wells have been sunk in the US alone; they are analogous to the paired holes needed for sequestration. Worldwide, the petroleum industry has driven tens of million wells for conventional oil and gas extraction.

The energy needed to run carbon capture in mantle rocks in an arid country like Oman could be solar derived. Moreover, there are possible by-products such as hydrogen released by the chemical reactions. The alternative, more conventional approach of pumping CO2 into deep, permeable sedimentary reservoirs also carries substantial costs but has the disadvantage of possible leakage. Ophiolites are not rare, occurring as they do in areas of ancient destructive plate margins. So permanently locking away excess atmospheric greenhouse gases currently driving global warming would require only a tiny proportion of the volume of peridotite that is easily accessible by drilling. It would clearly cost an eye-watering sum, but bear in mind that the four biggest petroleum companies – BP, Shell, Chevron and Exxon – have harvested profits of around US$ 2 trillion since 1990. Along with the global coal industries, they are the source of the present climate emergency.

If you’d like to read more of Steve’s blog……

Many thanks to Steve Drury for permission to republish his article and to Bernie Bell for sending it into The Orkney News

Leave a Reply