Culture

Can rock weathering halt global warming?

By Steve Drury PUBLISHED ON July 14, 2020

The Lockdown has hardly been a subject for celebration, but there have been two aspects that are, to some extent, a comfort: the trickle of road traffic and the absence of convection trails. As a result the air is less polluted and much clearer, and the quietness, even in cities, has been almost palpable. Wildlife seems to have benefitted and far lessCO2 has been emitted.

Apart from the universal tension of waiting for one of a host of potential Covid-19 symptoms to strike and the fact that the world economy is on the brink of the greatest collapse in a century, it is tempting to hope that somehow business-as-usual will remain this way. B*gger the gabardine rush to work and the Great Annual Exodus to ‘abroad’. The crisis in the fossil fuel industry can continue, as far as I am concerned, But then, of course, I am retired, lucky to have a decent pension and live rurally.

Despite the health risks, however, global capital demands that business-as-it-was must return now. A planet left to that hegemonic force has little hope of staving off anthropogenic ecological decline. But is there a way for capital to ‘have its cake and eat it’?

Some would argue that there are indeed technological fixes. Among them is sweeping excess of the main greenhouse gas ‘under the carpet’ by burying it. There are three main suggestions: physically extracting CO2 where it is emitted and pumping it underground into porous rocks; using engineered biological processes in the oceans to take carbon into planktonic carbohydrate or carbonate shells and disposing the dead remains in soil or ocean-floor sediments; enhancing and exploiting the natural weathering of rock. The last is the subject of a recent cost-benefit analysis (Beerling, D.J. and 20 others 2020. Potential for large-scale CO2 removal via enhanced rock weathering with croplands. Nature, v. 583, p. 242–248; DOI: 10.1038/s41586-020-2448-9)

Carbon dioxide in the rock cycle (Credit: Skeptical Science, in Wikipedia)

Research into the climatic effects of rock weathering has a long history, for it represents one of the major components of the global carbon cycle, as well as the rock cycle.

Natural chemical weathering is estimated to remove about a billion metric tons of atmospheric carbon annually. That is because the main agent of weathering is the slightly acid nature of rainwater, which contains dissolved CO2 in the form of carbonic acid (H2CO3). This weak acid comprises hydrogen ions (H+), which confer acidity, that are released by the dissolution of CO2 in water, together with HCO3ions (bicarbonate, now termed hydrogen carbonate).

During weathering the hydrogen ions break down minerals in rock. This liberates metals that are abundant in the silicate minerals that make up igneous rocks – predominantly Na, Ca, K, and Mg – as their dissolved ions, leaving hydrated aluminium silicates (clay minerals) and iron oxides as the main residues, which are the inorganic basis of soils.

The dissolved metals and bicarbonate ions may ultimately reach the oceans. However, calcium and magnesium ions in soil moisture readily combine with bicarbonate ions to precipitate carbonate minerals in the soil itself, a process that locks-in atmospheric carbon.

Another important consequence of such sequestration is that it may make the important plant nutrient magnesium – at the heart of chlorophyll – more easily available and it neutralises any soil acidity built-up by continuous agriculture.  But carbon sequestration naturally achieved by weathering amounts to only about a thirtieth of that emitted by the burning of fossil fuels, and we know that is incapable of coping with the build-up of anthropogenic CO2 in the atmosphere: it certainly has not since the start of the Industrial Revolution.

What could chemical weathering do if it was deliberately enhanced?

One of the most common rocks, basalt, is made up of calcium-rich feldspar and magnesium-rich pyroxene and olivine. In finely granulated form this mix is particularly prone to weathering, and the magnesium released would enrich existing soil as well as drawing down CO2. Hence the focus by David Beerling and his British, US and Belgian colleagues on systematic spreading of ground-up basalt on cropland soils, in much the same way as crushed limestone is currently applied to reverse soil acidification. It is almost as cheap as conventional liming, with the additional benefit of fertilising: it would boost to crop yields.

The authors estimate that removal of a metric ton of CO2 from the atmosphere by this means would cost between US$ 55 to 190, depending on where it was done. One of their findings is that the three largest emitters of carbon dioxide – China, the US and India – happen to have the greatest potential for carbon sequestration by enhanced weathering. Incidentally, increased fertility also yields more organic waste that itself could be used to increase the actual carbon content of soils, if converted through pyrolysis to ‘biochar’ .

It all sounds promising, almost ‘too good to be true’. The logistics that would be needed and the carbon emissions that the sheer mass of rock to be finely ground and then distributed would entail, for as long as global capital continues to burn fossil fuels, are substantial, as the authors admit.

The grinding would have to be far more extreme than the production of igneous-rock road aggregate. Basalt or related rock is commonly used for resurfacing motorways, not especially well known for degrading quickly to a clay-rich mush. It would probably have to be around the grain size achieved by milling to liberate ore minerals in metal mines, or to produce the feedstock for cement manufacture: small particles create a greater surface area for chemical reactions. But there remains the issue of how long this augmented weathering would take to do the job: its efficiency.

Experimental weathering to test this great-escape hypothesis is being conducted by a former colleague of mine, using dust from an Irish basalt quarry to coat experimental plots of a variety of soil types. After two months Mg and Ca ions were indeed being released from the dust, and tiny fragments of olivine, feldspar and pyroxene do show signs of dissolution. Whether this stems from rainwater – the main objective – or from organic acids and bacteria in the soils is yet to be determined. No doubt NASA is doing much the same to see if dusts that coat much of Mars can be converted into soils Beerling et al. acknowledge that the speed of weathering is a major uncertainty.

Large-scale field trials seem some way off, and are likely to be plagued by cussedness! Will farmers willingly change their practices so dramatically?

See also: Lehmann, J & Possinger, A. 2020. Removal of atmospheric CO2 by rock weathering holds promise for mitigating climate changeNature, v. 583, p. 204-205; DOI: 10.1038/d41586-020-01965-7

If you would like to read more of Steve’s blog……….. https://earthlogs.org/homepage/


Many thanks to Steve Drury for permission to republish his article in The Orkney News and to Bernie Bell for sending it to us.

3 replies »

  1. And – a helpful note, from Steve………

    “I have now compiled all the Earth-logs posts from 2019 into PDFs for the categories: Geohazards; Geomorphology; Human Evolution; Miscellaneous; Palaeobiology; Palaeoclimatology; Physical Resources; Planetary Science; Sediments and Stratigraphy, and Tectonics. They are available for download through the Annual logs pull-down in the main menu – just select a category, then scroll down to the 2019 list of contents and click on the link.

    I hope this format is useful for reference purposes.”

  2. Dear Editor. It is really gratifying that TON regularly reblogs my efforts on Earth-logs – as a former senior lecturer at the Open University, my central aim with these screeds is to keep non-professionals in touch with my own branch of the sciences. Sincere thanks. Steve Drury

Leave a Reply